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Abstract. Indefinite quadratic programs with quadratic constraints can be reduced to bilinear pro- 
grams with bilinear constraints by duplication of variables. Such reductions are studied in which: (i) 
the number of additional variables is minimum or (ii) the number of complicating variables, i.e., 
variables to be fixed in order to obtain a linear program, in the resulting bilinear program is minimum. 
These two problems are shown to be equivalent to a maximum bipartite subgraph and a maximum 
stable set problem respectively in a graph associated with the quadratic program. Non-polynomial but 
practically efficient algorithms for both reductions are thus obtained. Reduction of more general 
global optimization problems than quadratic programs to bilinear programs is also briefly discussed. 
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1. Introduction 

A quadratic program can be written as follows, in its most general form: 

Problem (Q) = < 

n n n 
min C 2 qjjXjxj + C  9ixi + 40 

;=I j=i i=l 

subject to: 

j=l j=i 
k=1,2,...,m 

. XjER i=1,2 )...) y1, 

where the coefficients qji, qi, qo, ri, r:, rt (i, j = 1,2,. . . , n; j 2 i; k = 
1,2,. . . ) m) are real numbers. No assumptions are made on convexity or 
concavity of the objective function or the constraints left-hand sides. The con- 
straints possibly include nonnegativity and/or range ones. Without loss of 
generality, some or all of the constraints of (Q) may be assumed to be equalities. 
Problem (Q) thus consists in minimizing an indefinite quadratic function subject 
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to indefinite quadratic constraints. It has numerous applications in various fields. 
Many of them are gathered in the recent book of Floudas and Pardalos [22]. 

General quadratic programs (Q) appear to be very difficult to solve exactly, 
i.e., as global optimization ones. Many algorithms are available for particular 
cases, e.g., Baron [7], Ecker and Niemi [18] and Pham [38] for convex programs; 
Reeves [41] for separable programs; Kough [32], Benacer and Pham Dinh [9], 
Pardalos, Glick and Rosen [34], Phillips and Rosen [39] for programs with 
indefinite objective function and linear constraints; and A&Khayyal, Horst and 
Pardalos [3] for programs with concave objective function and separable con- 
straints. Numerous algorithms have also been proposed for the minimization of 
concave quadratic functions subject to linear constraints, see Pardalos and Rosen 
[35] [36], Horst and Tuy [29] for surveys. In contrast, few papers address the 
general case of problem ( Q), and we have found none which present a direct 
approach. The solution approach explored up to now consists in reducing problem 
(Q) to another more tractable one, and possibly deriving improved algorithms for 
the latter. Pham Dinh and El Bernoussi [37] and Tuy 1461 express problem (Q) as 
a d.-c. program (i.e., a problem in which the objective function and constraints 
left-hand sides are differences of convex functions) and solve it by outer- 
approximation. It has long been known (Konno [30], Pardalos and Rosen [36]) 
that indefinite quadratic programs with linear constraints can be reduced to 
bilinear programs with separable constraints (see below) by duplication of vari- 
ables. Floudas, Aggarwal and Ciric [21] extend this result, noting that problem 
(Q) can be reduced in a similar way to a general bilinear program, i.e., 
minimization of a bilinear function subject to bilinear constraints. Such programs 
may be written as follows: 

’ min i: E cijxiy, + i1 c:xi + g clYi + CO 
1=1 j=l 

subject to: 

Prob1em tB) =< 2 2 +yj + g1 ai.” + ,$, gkyi + u; s 0 k = 1,2, . . . , m 
i=l ]=I 
xiER i=l,2 ,..., n, 
y,ER! i=1,2 ,..., p, . 

wherethecoefficientscij,cl,c~,aif,a:”,a~k,a~(i=1,2 ,..., n;j=1,2 ,..., p; 
k = 1,2,. . . , m) are real numbers. Again the constraints may include non- 
negativity and/or range ones, as well as equalities. Problem (B) is linear in the x 
variables for fixed values of the y variables, and linear in the y variables for fixed 
values of the x variables. It appears to have first been considered by Wolsey [48], 
although a particular case also involving bilinear constraints, the modular design 
problem, was previously studied by Evans [19] (see Al-Khayyal [l] for further 
references on that problem). The largest part of the work on bilinear program- 
ming concerns the case of separable constraints, in which the constraints are linear 
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and decompose into two subsets involving the x or the y variables exclusively, see 
Pardalos and Rosen [36] for a survey. Bilinear programs with joint linear 
constraints are studied by Al-Khayyal and Falk [2]. Problem (B) can be solved by 
generalized Benders decomposition (Wolsey [48], SimCes [44], Flippo [20], 
Floudas and Visweswaran [23], Visweswaran and Floudas [47]), branch-and- 
bound (SimGes [44], Al-Khayyal [l]) and linearization (Sherali and Alameddine 
t4m 

Reduction of problem (Q) to problem (B) can be done in many ways and the 
choice of a way clearly influences the ease of solution of the resulting bilinear 
problem. In this paper we propose optimal reduction methods for two criteria: (i) 
the number of additional variables, discussed in Section 2, and (ii) the number of 
complicating variables (i.e., the number of variables which yield, after fixation, an 
easy-to-solve problem, here a linear program, see Geoffrion [26]), considered in 
Section 3. In the case of problem (B) the latter number is the smallest of the 
number of x and of y variables, omitting variables appearing only in linear terms. 
Reduction to problem (B) of more general global optimization problems than 
problem (Q) is briefly discussed in Section 4. 

We only consider here reductions based on duplication of variables. While 
elimination of variables offers further possibilities when problem (Q) contains 
some linear equality constraints, we do not study them in this paper. Nor do we 
consider here reductions of problem (Q) to other problems than problem (B), as, 
e.g., biconvex programs, while acknowledging that such reductions might lead, in 
some cases, to easier to solve problems. 

2. Short Reductions 

In this section we consider reductions of Problem (Q) to problem (B) which 
involve the minimum number of additional variables X; (and new constraints 
xi = xl). We call such reductions short. While there may be, even in the absence 
of linear constraints, other ways than duplication of variables to reduce problem 
(Q) to problem (B), which could possibly involve less additional variables for 
some particular values of the coeficients, we do not consider them here. Thus the 
reductions studied rely only on the structure of problem (Q), i.e., the information 
that coefficients are or are not equal to 0. 

A few graph theoretic concepts will be needed, see Berge [lo] for basic 
definitions. Let us define the co-occurrence graph G = (V, E) of problem (Q) as 
follows: a vertex vi is associated with each variable xi ( j = 1,2, . . . , n) and an 
edge {vi, vi} belongs to E if and only if either qij # 0 or r: # 0 for some k 
(k = 1,2,. . . , m), i.e., if both variables xi and xi appear in a term of the 
objective function or the constraints. If this condition holds for i = j, i.e., qii f 0 
or r-if0 for some k (k=1,2,. . . , m), the edge is a loop. Recall that a set S of 
vertices of V is stable if no two of its vertices are adjacent, i.e., the two endpoints 
of an edge. The complement in V of a stable set S of G is a transversal of G. The 
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stability number of graph G, noted cw(G), is the maximum number of vertices in a 
stable set of G. A set C of vertices of V is a clique if any two of its vertices are 
adjacent. A graph G is bipartite it its vertex set V can be partitioned into two sets 
VI and V, such that any edge of E joins a vertex of VI to a vertex of V, . A 
subgruph G, = (A, EA) of G is a graph obtained by keeping all vertices of a 
subset A of V and all edges of E joining two vertices of A, including loops. A 
subgraph G, of G is a maximum bipartite subgraph if it is bipartite and has a 
maximum number of vertices subject to that condition. Let a*(G) denote this 
number of vertices. We call (Y*(G) the bipartition number of G. 

THEOREM 1. A quadratic program (Q) with n variables and co-occurrence 
graph G with bipartition number CQ( G) has a short reduction to a bilinear program 
(B) with n - (Y*(G), but no fewer, additional variables. 

Proof. Let us first show that at most n - a,(G) additional variables are 
needed. Let G, = (A, EA), where A = VI U V, , be a maximum bipartite subgraph 
of the co-occurrence graph G associated with (Q). Hence, (Al = a,(G). Let 
WI = V\A. Duplicate the vertices of WI and denote by W, the corresponding 
vertex set, i.e., W, = {uJ 1 uj E WI}. Construct anew graph G’ = (V U W, , E’) where 
E’=E,UE,UE,UE, with E,={{vi, u~}EEIzI~EV, and u,EW,}; 
E2={{ui, ui} ] {ui,uj}EE, uiEVl and u~EW,} and E,={{uj, uj}) ui~W, 
and there is a loop at vertex u,} U {{ ui , vi} ( i <i, {ui , u,} E E, ui E WI and 
uj E WI}. G” is a bipartite graph with edges joining vertices of VI U WI to vertices 
of V, U W, . Note that each product of variables (including squares) in problem 
(Q) is associated with an edge of G’. Whenever a product xixi is associated with 
an edge {vi, u;} of E, U E, , replace xi by XI and add the constraint xj = xi. This 
yields a bilinear program with as variables of the first set (variables x in the 
definition of program (B)) those associated with vertices of VI U WI, and as 
variables of the second set (variables y in the definition of program (B)) those 
associated with vertices of V, U W, . 

We now show that at least n - (Ye additional variables are needed. Assume 
problem ($3) can be reduced to problem (B) by introducing less than IZ - a;(G) 
additional variables. Consider then the subgraph G, = (II, ED) of the co-occur- 
rence graph G associated with (Q), induced by the set D of vertices associated 
with variables which have not been duplicated in the reduction. As G, is 
associated with a bilinear subproblem (i.e., a problem obtained by deleting some 
terms in the objective function and/or constraints of the resulting problem (B)), 
it must be bipartite. However, by the above assumption, IDI > a,(G), a 
contradiction. n 

Finding a maximum bipartite subgraph of a graph G is NP-hard (Garey, Johnson 
and Stockmeyer [25]). However, this problem can be solved in practice for graphs 
of moderate size. Indeed, first note that additional variables must be introduced 
for all squared variables. The corresponding vertices in G may therefore be 
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deleted. Finding (Ye in the resulting graph can then be reduced to a maximum 
stable set problem by using Theorem 13, Chapter 16 of Berge [lo]. Two copies of 
the graph are made and homologous vertices uj and cj are joined by edges. This 
leads to a graph G + K,, the sum of graph G and an edge, according to the 
definition of the graph sum operation (see Berge [lo], p. 304). Then any 
maximum stable set in graph G + K2 is associated with a maximum bipartite 
subgraph of G. Recent algorithms for the maximum clique or stable set problem 
(Carraghan and Pardalos [13], Friden, Hertz and de Werra [24], Balas and Yu 
[6]) allow the solution of problems with several hundreds of variables. 

EXAMPLE 1. (Colville problem 3 [14], Hock and Schittkowski problem 83 
PW. 

2 mm c1x3 + c2xIx5 + c3x1 - cq 
subject to: 

Problem (Q,) 0 =z a, + u2x2x5 + u3x,x4 - u4x3x5 d 92 

I' 

90 G a5 + a6x2x5 + u,x,x2 + u,x: G 110 
20 s a, + U10X3X5 + UllX1X3 + U12X3X4 G 25 
ljSxjduj j=1,2,3,4,5. 

Coefficients ck (k = 1,2,3,4) and ak (k = 1,2, . . . ,12) as well as bounds Zj and 
uj are positive; values are given in Hock and Schittkowski [28]. The co-occurrence 
graph G, of problem (Q,) is represented on Figure 1. As it contains a loop at 
vertex u3, variable x3 must be duplicated. Vertex u3 can thus be omitted when 
determining a maximum bipartite subgraph of G, . 

The sum graph G, + K, defined to determine LYE is represented on Figure 2. 
Vertices of a maximum stable set, i.e., ul, i7* and cd, are underlined. A maximum 

Fig. 1. Co-occurrence graph G, for Example 1. 
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Fig. 2. Sum graph G, + K, for Example 1. 

bipartite subgraph of G is therefore induced by vertices ul, u2 and v4. This leads 
to Vl={u,,uq}, Vz={uI}, WI=(u,,u5}, and Wz=(u;,u~}. The graph G; 
associated with the resulting bilinear problem (B,) is depicted on Figure 3. A short 
reduction of problem (Q,) is obtained by duplicating variables x3 and x5 ; 
variables x1, x; and xi are complicating. After renaming some of the variables 
(x1 +y, ; xg +x1 ; x; +Y3 ; x; ty,), the resulting bilinear Problem (I?,) may be 
written: 

Fig. 3. Graph G; for Example 1. 
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Problem (B,) 

’ min c1x3y3 + c2xIy, + c3y, - c4 
subject to: 
0 d a, + a,x,y, + a,x,y, - a,x,y, s 92 
90 d a5 + a,x,y, + a,x,y, + a,n,y, C 110 
20 G a, + a,,x,y, + a,,x,y, + a,,x,y, < 25 

Xl = Yz 
x3 = Y3 
l,Sx,Cu, 

3. Narrow Reduction 

We now consider reductions of problem (Q) to a problem (B) with the minimum 
number of complicating variables. We call such reductions narrow. Again we 
consider only reductions relying solely on the structure of problem ((2). 

THEOREM 2. A quadratic program (Q) with n variables and co-occurrence 
graph G with stability number a(G) has a narrow reduction to a bilinear program 
(B) with n - a(G), but no fewer, complicating variables. 

Proof. Let us first show that at most n - a(G) complicating variables are 
needed. Let S c V denote a maximum stable set of G. Hence, ISI = a(G). Let 
IV, = V\S. Duplicate the vertices of WI and denote by W, the corresponding 
vertex set, i.e., W, = {u; 1 USE WI}. Construct a new graph G’ = (VU W,, E’) 
where E’=E,UEzUE3 with E,={{ui, uj}EE( uiES and viEWI}; E,= 
{{ui, u;}) {ui, uj}eE, i>j, uiEW, and ujEWI} and E3={{ui, uJ} ( viEWI 
and there is a loop at vertex uj in G}. 

Each product of variables (including squares) in problem (Q) is associated with 
an edge of G’. Whenever a product xixj is associated with an edge {vi, u;} of 
E, U E, , replace xi by X; and add the constraint xi = xi. This yields a bilinear 
program with as variables of the first set (variables x in the definition of program 
(B)) those associated with the vertices of WI and as variables of the second set 
(variables y in the definition of program (B)) those associated with the vertices of 
W, U S. Thus, at most (WI] = n - a(G) complicating variables are needed. 

We now show that at least n - a(G) complicating variables are required. 
Consider a narrow reduction of problem (Q) and an associated bipartite graph 
G’ = (VI U V, , E’) where VI is the set of vertices associated with the variables of 
the first set in program (B) and Vz is the set of vertices associated with the 
variables of the second set. Hence IV11 =S IV,1 . Duplicating a vertex uj of a graph G 
by a vertex uJ , while keeping the same set of edges (those incident with uj in the 
original graph being incident either with uj or with uJ) increases a(G) by at most 
1. By iteration, if 4 is the number of additional variables needed, a(G’) s 
a(G) + 4. As V, is stable, it follows that IF’,\ B n + q - cy(G’) since IV, U V,( = 
n + q. Hence IV,\ 3 n + q - (a(G) + q) = n - a(G). n 
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EXAMPLE 2. (Dembo [15] [16]). 

Problem (Q,) 
C16X1X8 + c,,x,x, + c1*x4xs - x5x, Q 0 
c19x2xg + c2()xgxs + C,lX6 + c*zxz + c2jx*xg + c2‘$xgxg G 1 
C&3X10 + C26jXgX9 + C27X2 + C2$2Xlo + C29Xfj - X2X9 c 0 

c3,, + c31x2x10 + c32x3x10 - x2 s o 

c33x2 - x3 60 
$X1 - x2 s 0 

c35x7 + c36x8 G 1 
c37x1 + c38x1x4 + c,,x; - x4 6 0 
li~xi~ui j=1,2,. . . ,13. 

min clxll + c2xIz + c3x13 
subject to: 
c&t* + c5x1xs - Xl1 =s 0 
c&d9 + c,x2x9 - Xl2 =s 0 
CSXIO + C9X3X10 - Xl3 s 0 

‘C10X2 + CllX2X5 + c,,x; - x5 s 0 
C13X3 + C14X3X6 + c*5x: - X6 s 0 

Coefficients ck for k = 1,2, . . . ,39 include positive and negative values and all 
bounds Zj and uj are strictly positive, see Dembo [16]. 

The co-occurrence graph G, of Problem (Q,) is represented in Figure 4. 
Vertices belonging to a maximum stable set, i.e., uq, ug, u6, uIo, urr, u12, and 
u13, are underlined. The stability number a(G) is equal to 7. The bipartite graph 
G; deduced from G, and its stable set are represented on Figure 5. As u; , VA and 
ZIG are isolated vertices, only /W,l - 3 = 3 additional variables are required. So 
program (Q,) can be reduced to a bilinear program (B2) with 6 complicating 

51 0 - 

v12 l - 

v13 l - 

Fig. 4. Co-occurrence graph GZ for Example 2. 
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Fig. 5. Graph G; for Example 1 

variables (those associated with vertices of WI) and 3 additional variables (those 
associated with vertices of W,). After renaming some of the variables (x, ty, ; 
X5-y,; X6‘+y6; x7+--x4; x8+$; “9+-X6; X10+Y,; xll’Y8; X12+-Y9; 

x13 +y,,), program (B,) may be written as follows: 

Problem (I$) 

I min cd5 + c2Yg + c3Ylo 
subject to: 
c4xS + c5Ylx5 - YS So 
‘gx6 + c7Y2x6 - Y9 So 
CsY7 + C9Y7X3 - YlO so 
c10x2 + cllY5x2 + ‘12’2Y2 - Y5 do 
c13x3 + c14Y6x3 + ‘1Sx3Y3 - YS So 
c16Ylx, + c17Y4x4 + ‘lS’SY4 - Y5’4 do 
c19Y2x6 + cZOY,x, + ‘2lY6 + ‘22YS + ‘23Ylx5 + ‘24YSx6 so 

c25Y7x3 + c26Y6x6 + c27x2 + ‘2Sx2Y7 + ‘29Y6 - Y2x6 So 

c30 + c31x2Y7 + ‘32’3Y7 - x2 =% ’ 

c33x2 - x3 SO 

C34Xl - x2. -=o 
c3sx4 + CS6X5 =z 1 

c37x1 + ‘3SxlY4 + c39xlYl - Y4 co 
Xl = Yl 
x2 = Y2 

x3 = Y3 
and the corresponding range constraints. 
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y2 
Fig. 6. Co-occurrence graph G for Example 3. 

‘6 

The narrow reduction so obtained is also short, as at least three additional 
variables are needed since three variables are squared in program (Q,). Note, 
however, that, in some cases, there may be no narrow reduction among the class 
of short reductions. Moreover, a program which is already in bilinear form may 
still have a non-trivial narrow reduction, which will be obtained by applying 
Theorem 2. In other words, adding variables to a bilinear program may reduce 
the number of complicating variables. This is illustrated by the following example: 

EXAMPLE 3. Problem (Q3). min xlyl + xzYl + x3Yl + X3Y2 + X3Y3. 

This program has 3 complicating variables, e.g., x1, x2 and x3. Its co-occurrence 
graph G, is represented on Figure 6 with vertices u1 , u2, ug, v4, u5, ug associated 
respectively with variables x1, x2, y, , x3, y, and y3. Graph G, has a minimum 
transversal (the complement of a maximum stable set) with 2 vertices, i.e. u3 and 
u4, associated with variables y, and x3. Duplicating x3 yields a problem with 7 
variables but only 2 complicating variables. After renaming the variables 
(Yl +x 1; yz+y4; Y,+Y~; xl+yl; x,+Y,; X,+X,; 4+y3>, it may be 
written: 

I 

min xlyl + ~0, + xly3 + xzy4 + x0, 
Problem (B3) subject to: 

x2 = Y, . 

4. Extensions 
Many more general problems than quadratic programs (Q) can be reduced to 
bilinear programs (B). In this Section, we briefly discuss how this can be done. 

4.1. POLYNOMIAL PROGRAMS 

As noted by Floudas, Aggarwal and Ciric [Zl], polynomial programs can be 
reduced to bilinear programs (B) by repeated substitutions of squares of variables 
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or products of two variables by additional variables. Note that substitutions of 
additional variables to products of more than 2 variables or to variables raised to 
powers higher than 2 could also be used. They sometimes lead to shorter 
reductions as shown in the Example 4 below. We first consider the case of a single 
product of variables: 

PROPOSITION 1. Minimization of a product of k (k 2 3) variables can be 
reduced to a bilinear program (B) with k - 1 complicating variables by introducing 
k - 2 additional variables. Moreover, both of these numbers are minimum. 

Proof. We first show that at most k - 1 complicating variables and k - 2 
additional variables are needed to obtain a bilinear program. Let Il%, xi be the 
product to be minimized: define k - 2 new variables by y, = x1x2, yj = yj-lxj+l 
forj=2,3,. . . , k - 2; then the product may be written as Y~-~x~. Moreover, the 
set {x1, Y,, yz, . . . , y,-,} can be chosen as set of complicating variables. 

We now show that at least k - 1 complicating variables and k - 2 additional 
variables are required. At each successive substitution reduces the number of 
variables in the product by one, k - 2 additional variables are needed. Moreover, 
it is easy to show that each initial or additional variable must appear in exactly one 
product of the resulting bilinear program (B). So the co-occurrence graph G of 
program (B) is a perfect matching on 2k - 2 vertices and has a minimum 
transversal containing n - a(G) = k - 1 vertices. n 

An immediate application of Proposition 1 is to multiplicative programs (Konno 
and Kuno [31], Thoai 1451) . m which the objective function is a product of k 3 2 
linear functions and the constraints are linear or convex. If k = 2, the most 
frequently studied case, two variables are set equal to the linear factors and any 
one of them can be chosen as unique complicating variable when constraints are 
linear. 

PROPOSITION 2. Minimization of a product II,,, x9 of variables raised to 
positive integer powers pi (with at least pi 3 2 for some j E J) can be reduced to a 
bilinear program with CjG, pj - 2 + max(2 - 1 J(, 0} additional variables or with 1 J(, 
but no fewer than (JI - 1, complicating variables. 

Proof. Let us first write IljeJ x9 as a product of CjeJ pi variables, with 
repetitions. Then if ] Jl> 1 a similar reasoning to the proof of Proposition 1 shows 
that CjsJ pi - 2 additional variables suffice; if ) Jl = 1 (i.e., J = {i}) p, - 1 addi- 
tional variables suffice. Again from Proposition 1 at least 1 JJ - 1 complicating 
variables are needed. Reducing separately each ~3 with pi 2 2 in the product 
yields a bilinear program with I J\ complicating variables, i.e., the variables xi 
themselves. n 

The bound on the number of additional variables of Proposition 2 is not always 
sharp, as we now show: 
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EXAMPLE 4. min xfxix:. 

The reduction of Proposition 1 leads to, e.g., y, =x1x2, y, = xly,, y, = x2y2, 
y, = x3y, and the product becomes equal to x3y,, with 4 additional variables. 
However, the reduction y1 = x1x2, y, = n3yl, y, = x3y1 makes the product equal 
to y2y, and uses only 3 additional variables. 

Let us now consider a general polynomial program: 

i=1,2 ,..., m, 

where the, c, for k = 1,2, . . . , K0 and aik for k = 1,2, . . . , Ki and i = 1, 2, . . . , m 
are real numbers, the pi and pij for the same index sets are positive integers. 
Again the constraints may contain non-negativity or range ones as well as 
equalities. 

In order to partially extend Propositions 1 and 2 to the case of program (P), we 
need some more definitions. Recall that a hypergruph H = (V, E) (cf Berge [ll]) 
is a finite set of subsets Ei (called edges) of a set V of elements (called vertices). 
The co-occurrence hypergraph H of program (P) is defined by associating vertices 
ujEV with variables xj (j=l, 2,. . . , n) and taking as edges the vertex sets 
corresponding to the variables of each product of variables in (P) (without 
repetition). The Z-section of a hypergraph H is the graph Hz = (V, E(H)) 
obtained by taking the same set V of vertices as in H and as edges all pairs of 
vertices belonging both to the same edge of H. A partial subgraph C = (V, E,) of 
Hz will be called an edge-edge covering of H if the vertex set of each edge Ei of H 
contains the endpoints (E, 1 - 2 edges of C which do not induce any cycle (in other 
words, each edge must contain one or two disjoint trees of C with a total length of 
( Ei/ - 2). Note than any reduction of problem (P) to a bilinear program (B) 
induces an edge-edge covering of H. Edges correspond to pairs of vertices 
associated with variables xk , xI for substitutions of the form yj = y,x,, and 
recursively to the highest indexed variable in the expression of y, or y, for 
substitutions of the form yj = xkxI or yi = y,y,. 

PROPOSITION 3. Let (P) be a polynomial program with n variables of which t 
have degree greater than or equal to 2, and a co-occurrence hypergraph H. Let % 
denote the set of edge-edge coverings of H. Then the number of additional variables 
in any reduction of (P) to a bilinear program (B) is at least 

t+rnTl(E,l. 



REDUCTION OF QUADRATIC TO BILINEAR PROGRAMS 53 

Proof. Terms of the form xy or $0 with pi 2 2 or pij 3 2 may be reduced first. 
This takes at least t additional variables and does not modify the co-occurrence 
hypergraph H. Then, to reduce terms with more than 2 variables, additional 
variables corresponding to an edge-edge covering of H must be used. There are at 
least min,,, jE,-j of them. n 

The bound of Proposition 3 is often loose, but is sufficient to show that some 
reductions of polynomial to bilinear programs are short. 

EXAMPLE 5. (Bartholomew-Biggs 181, Hock and Schittkowski [ZS] problem 
71). 

I 

min .x:x, + x1+x4 + x1x3x4 + x3 
subject to: 

Problem (PI) x1x2x3x4 -25>0 
xf + x; + x; + x’, - 40 = 0 
1dxjc5 j=1,2,3,4. 

The co-occurrence hypergraph of problem (P,) is represented on Figure 7; its 
2-section is the complete graph on four vertices. Four additional variables, xi, xi, 
xi, and xi, are needed to reduce the squared variables. A minimum edge-edge 
covering of the 2-section Hz of H is represented in dash lines on Figure 7, it 
consists of edges { LJ, , u2} and {ul, uq). 

Thus, two additional variables y1 = xlxq and y, = y,x, suffice to reduce all 
products to bilinear ones. The co-occurrence graph so obtained is bipartite. The 
reduction uses 6 additional variables and is short. The resulting bilinear program 

Fig. 7. Co-occurrence hypergraph for Example 4. 
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(B4) has 4 complicating variables. It may be written: 

Problem (B4) 

‘min xiy, + y, + x3y, + xj 
subject to: 
x,y,-2530 

xlYl+ X2Yz + X3Y3 + X4Y4 - 40 = 0 

Y, = XlY4 

Y, = X2Y5 

Xl =Yl 
x2 = Y, 

x3 = Y3 

x4 = Y, 

and the corresponding range constraints. 

Considering now complicating variables yields stronger results. Indeed a lower 
bound generalizing the lower bound of Theorem 2 can be obtained. 

THEOREM 3. Let (P) be a polynomial program with co-occurrence hy- 
pergraph H with 2-section H2. Then the number of complicating variables in any 
reduction of (P) to a bilinear program (B) is at least 

where a(H2) is the stability number of Hz. 
Proof. Using a similar reasoning than in Proposition 1, at least k - 1 complicat- 

ing variables in (B) are associated with any product of k variables in (P). 
Moreover, these complicating variables must either be variables of that product or 
additional variables associated, directly or indirectly, with variables of that 
product only. So the number of complicating variables is not less than the number 
of vertices in a set containing (Ejl - 1 vertices from each edge of H. This number 
is bounded in turn by n - a(H2). n 

Again, the bound is not always sharp but is reached for some problems. The 
2-section H2 of H for Example 5 is equal to the complete graph on four vertices 
with loops at all of them. So cy(Hz) = 0 and the reduction given above is narrow. 

4.2. HYPERBOLIC PROGRAMS 

We call hyperbolic programs those programs in which the objective function and 
left-hand sides of the constraints can be expressed, possibly after reduction to 
common denominators, as ratios of polynomials. If the denominators in the 
constraints are non-negative or non-positive, these constraints can be expressed as 
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polynomials after multiplication by the denominator, but the sign of these 
denominators may be undetermined or unknown. Hyperbolic programs comprise 
all programs in which the objective and left-hand sides of constraints are obtained 
from constants and variables by operations of addition, subtraction, multiplication 
and division. These expressions need not be given as ratios of polynomials and 
reduction to such a form may be cumbersome. So ratios within larger expressions 
may first be removed. This is done by introducing a new variable equal to the 
inverse of the denominator, in a straightforward way when the sign of the latter is 
determined. 

EXAMPLE 6. (Modification of the gravel box problem of Duffin, Peterson and 
Zener [17], Gochet and Smeers [27]). 

40 mm - + 20x,x, + 40X,X, + 10X,X, 
x1x2x3 

Problem (H,) subject to: 

I 
--x,-x2-xx,+8~0 
x17x2, x,>o. 

Setting y, = l/(x,x,x,), introducing two additional variables y2 = yIx, and ys = 
yzx2 to reduce the product ylx,x,x3 and one additional variable xi = x3 to reduce 
the set of terms x2x3, x1x2 and x1x3, (which correspond to an odd cycle of G) 
yields a short and narrow reduction. The resulting bilinear program (B5) has 3 
complicating variables, i.e., x1, y, and x3. It may be written after renaming some 
of the variables (x, ty,; yz +.x2; x; ty,): 

Problem (B5) 

min 4Oy, + 2Ox,y, + 4Ox,y, + lOx,y, 
subject to 
-x1-yz-x3+8~0 

x2 = XlYl 
Y3 = X2Y2 

X3Y3 = 1 
x3 = Y4 

all variables being strictly positive. 
Another class of programs in which a single additional and complicating 

variable is needed, as in the multiplicative programs discussed above, are the 
linear hyperbolic programs (e.g., Avriel et al. [4]). In such programs, a ratio of 
non-negative linear functions is to be minimized subject to linear constraints. 
Under the mild restriction that the feasible set does not reduce to a vector giving 
the value 0 to the denominator of the objective function (which can be easily 
checked) the above transformation applies in a straightforward way. (Note that 
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problems in which the ratio is to be maximized can be reduced to the minimiza- 
tion case by exchanging the numerator and the denominator). 

If the sign of the denominator is unknown and a value of 0 cannot be ruled out 
a priori, reduction is more difficult. In addition to setting y, = 1 /[h(x)] where the 
sign of h(x) is unknown, one must add the pair of disjunctive constraints h(x) 3 E 
or h(x) 4 -E where E is a small constant. The latter can be reduced to usual 
constraints involving a O-l variable by standard techniques, e.g., by setting 
(2y, - 1)/z(x) i F where y, is a O-l variable. Reduction of O-l variables is 
discussed below. Various forms of generalized and of nonlinear fractional pro- 
grams (Bernard and Ferland [12], Avriel et al. [4]) can be reduced to bilinear 
programs by combining standard techniques to express the minimum of a set of 
functions (to be maximized) with those given above. 

4.3. FRACTIONAL EXPONENTS, TRIGONOMETRIC AND TRANSCENDENTAL 

FUNCTIONS, INTEGER AND O-l VARIABLES 

Several further classes of programs can be reduced to polynomial and hence to 
bilinear programs. Problems with variables having fractional exponents, e.g., 
signomial geometric programs (Avriel and Williams [5]) can be reduced noting 
that y = xpiq where p and q are pairwise prime is equivalent to xp = yq (such a 
reduction is used implicitly in an example of Floudas, Aggarwal and Ciric [21]) 
and then applying techniques described above. Note that each variable with 
fractional exponent is associated with 2 complicating variables. 

EXAMPLE 7. (Stephanopoulos and Westerberg [43], Floudas, Aggarwal and 
Ciric [21]). 

Problem (G,) 
x1 +2x, c-4 
xy?+2xq44 
Xl a3 
x3 =s 1 
Xl, x2 > x3 7 x4 G= 0 

min x1 ‘.’ + x;.” - 6x, - 4x, - 3x, 
subject to: 
-3x, +x,-3x,=0 

The only nonlinear terms are the first two in the objective function, They are 
replaced by additional variables y, and y, ; then the constraints xi = y: and x: = yz 
are reduced to bilinear ones using 12 more additional variables. The resulting 
bilinear program (B6) has 4 complicating variables, i.e., x1, x2, yr and y2. After 
renaming some of the variables ( yr +x3 ; y, +x4 ; x3 +- y,, ; x4 +-yl,), it may be 
written: 
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Problem (B6) 

min x3 + x4 - 6x, - 4y,, - 3y,, 
subject to: 
Yl = Xl 

Y2 =xlYl 

Y3 = x3 

Y4 = X3Y3 

Ys = X3Y4 

Y6 = x3Y5 

xlY2 =x3Y6 

Y7 = x2 

YS =x2Y7 

Y, =x4 

Y 10 = X4Y4 

Yll = X4Y 10 

Yl2 = X4Yll 

x2Y8 ='4Y12 

-3x, + x2 - 3y,, = 0 
xl+2yl,s4 
x2+2y,,s4 
x,s3 

Y13 =z 1 ) 

all variables being non-negative. 
Provided convergence conditions are satisfied, trigonometric and transcendental 

functions can, be approximated by their expansion in MacLaurin series. Bounded 
integer variables can be expanded in powers of 2 multiplied by binary variables. 
Binary variables xi can be replaced by continuous ones, after adding the standard 
constraint xj(l - xi) = 0 (Ragavachari [40]) which is equivalent to xi - xix; = 0 
and xi = xi. 

EXAMPLE 8. (Mladineo [33]). 

min 4x,x, sin(47rx,) 

Problem (G2) 
subject to: 
()qxl 6 1 

Expanding sin(4rx,) as a MacLaurin series and keeping the first p terms allows 
to rewrite the objective function as 

min 4x,x, jl ‘-lpy’ xi,-, = ;l CkX1gk 

where 
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Ck = 4(-v+1(4792kP1 for k= 1 2 
(2k - l)! > ,.‘.> . 

p 

Then using additional variables to substitute for powers of x2 yields the bilinear 
program: 

min c ckxlY2k 
k=l 

subject to: 
Problem (B7) Y, = x2 

yi=yi-1x2 for j=2,3 ,..., 2p 
O~.Xi<l for j=1,2 

.OGYiS1 for j = 1,2, . . . ,2p , 

which has only 2 complicating variables. 
It thus appears that a very large class of programs involving smooth functions 

can be reduced to bilinear programs, often in an exact way or with an approxi- 
mation as precise as desired. They are thus amenable to solution, at least in 
principle. The numbers of additional and of complicating variables may, however, 
be large in some cases. Exact algorithms for finding short and narrow reductions 
are now available in the case of indefinite quadratic programs. Finding such 
reductions for more general cases appears to be difficult and is essentially an open 
problem. 
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